

Hands -On Activity: What's the Scoop on Juice?

Topic: Measuring Acidity ! By: Caitlyn Yackeren

Students will conceptually understand the significance of pH levels when determining the concentration of hydronium ions in each of the 5 juices.

Students will determine the pH levels and concentration of $[H_3O^{+1}]$ in the given 5 juices.

Objectives:

* Given 5 clear plastic cups, filled with different juices, and pH paper, students will determine the level of pH in each juice with 100 % accuracy.

Given a calculator, students will calculate the [H₃O+1] when given the pH levels of juices with 100% accuracy.
Given a blank data table, students will record their pH levels and [H₃O+1] calculations in the appropriate sections that are labeled with 100% accuracy.

Objectives Continued:

*Given blank graph paper, students will draw, label, and graph their recorded data with 100% accuracy.

^{*} Given a corresponding extra practice worksheet, students will be able to complete the problems with their pre-determined group members with 90 % accuracy.

Materials Needed:

* A set of 5 different juice solutions: cranberry juice, pineapple juice,grape juice, orange juice, and apple juice.

- * Data Recording Sheet/ Graph Paper
- * 5 plastic cups for the juices.
- * pH Paper
- * Calculator
- * Worksheet

Introduction :

* Do-Now: (**Based on lesson and material taught prior to this activity**)

-Define and Review the following basic concepts:

- 1) Acid
- 2) Base
- 3) Concentration
- 4) Independent Variable
- 5) Dependent Variable
- 6) pH

Find the $[H_3O+1]$ of a solution with a pH level of 5.56

Definition of Basic Concepts Terms:

- 1) Acid: a substance that donates hydrogen ions.
- 2) Base: a substance that accepts hydrogen ions.
- 3) Concentration: the relative amount of a particular substance, a solution, or mixture.
- 4) Independent Variable: the factor that is changed in an experiment, in order to study change in the dependent variable. (graphed on x-axis)
- 5) Dependent Variable: factor being measured or observed in an experiment. (graphed on y-axis)
- 6) pH: a measure of the acidity or alkalinity of a solution.

Find the $[H_3O^{+1}]$ of a solution with a pH level of 5.56.

Step 1: Write equation. $[H_3O+^1] = 10^-pH$

Step 2: Plug in pH value. [H₃O+¹]= 10^{-5.56}

Step 3: Solve [H₃O+¹]= 2.75

Introduction :

Explanation of hands- on activity to the students.

- * Objectives
- * Materials:
- A set of 5 different juice solutions:

cranberry juice, pineapple juice, grape juice, orange juice, and apple juice.

- Data Recording Sheet/ Graph Paper
- 5 plastic cups for the juices.
- pH Paper
- Calculator
- Worksheet

*Assign groups and distribute materials.

Development :

Beginning of group work.
 * During this time, students should be:

- -Collectively measuring the pH level of each juice.
- Individually recording their findings in the provided data tables.

Sample Measurements of pH Levels:

Apple Juice: pH: 3

Development :

Collectively review data table on handout.

* Example of appropriately filled- out data table:

5. The set of juices will be returned to the lab table to be used again by the next lab group.						
type of juice	Apple	Cranberry	Grape	Ovange June	Pineapple Juice	
pH of juice	3	2	4	5.	3	X-values
[H ₃ O ⁺¹] Decimal form	.001	001	1	L	100.	y-valu
[H ₃ O ⁺¹] Scientific Notation	10-3	10-2	10-4	10-5	10-3	

6. Create a graph with pH as the independent variable and concentration of H_3O^{+1} as the dependent variable and use the statistics capabilities of a graphing utility to graph the data.

Development:

* Brief discussion of data table.

- Pattern/ relationship between pH level and [H₃O+¹].

* At this time, students will:

- -Form coordinate points from the data table.
- Graph and label their coordinates on the blank plane.

* Example of acceptable form of graph:

Guided Practice :

* At this time, students will:

- Complete the Extra Practice worksheet, and answer comprehension activity questions upon completion of worksheet.

Find the missing information from the data given below. (Modeled steps from do- now.) 1) Milk:

```
pH Level: 7.8
```

 $[H_3O+^1]:?$

Step 1: Write equation. $[H_3O+^1] = 10^{-}pH$ Step 2: Plug in pH value. $[H_3O+^1] = 10^{-}7.8$ Step 3: Solve $[H_3O+^1] = 1.58$

Acid or Base? : Base

* Because neutral pH level is 7 and milk's pH level is above 7.

Independent Practice :

Homework Assignment: *Show all of your work, including formulas/ equations used.

- Find the Acidity/ pH level and $[H_3O^{+1}]$ of lemon juice.
- Find the Acidity/ pH level and $[H_3O^{+1}]$ of lime juice.
- Make a table and record your data.
- Label and graph your data on graph paper.

Bloom's Taxonomy:

Level 1:Knowledge

*Do-Now: -Define and Review basic concepts -Recall the formula for solving [H₃O+¹] Level 2: Comprehension *Do-Now/Guided Practice:

-Translate given information into known formulas to solve appropriately.

Level 3:Application *Hands- On Activity:

-Construct a graph based on collected data of pH levels and [H₃O+¹].

- Discover significance or patterns between the pH levels and [H₃O+1].

Bloom's Taxonomy:

★ Level 4:Analysis

*Hands-On Activity/ Guided Practice:

-Identify patterns and relations between pH levels and [H₃O+¹]. -Examine the formulas and concepts used for finding missing information.

- Level 5: Synthesis
 *Hands-On Activity/ Guided Practice:
 - -Generate deeper understanding of Acidity with pH levels and the relation it has to $[H_3O^{+1}]$.

- Completing the Comprehension review questions to generate conceptual understanding of the concepts taught.

Level 6:Evaluation *Hands- On Activity:

-Support one's conclusions through collected data, graphs, and questions.

http://www.algebralab.org/activities/activity.aspx?file=Science_Juice.
 xml

• Google images