Hands -On Activity: What's the Scoop on Juice?

Topic: Measuring Acidity ! By: Caitlyn Yackeren

Goals:

\Rightarrow Students will conceptually understand the significance of pH levels when determining the concentration of hydronium ions in each of the 5 juices.
\Rightarrow Students will determine the pH levels and concentration of $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]$ in the given 5 juices.

* Given 5 clear plastic cups, filled with different juices, and pH paper, students will determine the level of pH in each juice with 100% accuracy.
* Given a calculator, students will calculate the $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{+}\right]$ when given the pH levels of juices with 100% accuracy. * Given a blank data table, students will record their pH levels and $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]$ calculations in the appropriate sections that are labeled with 100% accuracy.
*Given blank graph paper, students will draw, label, and graph their recorded data with 100% accuracy.
* Given a corresponding extra practice worksheet, students will be able to complete the problems with their pre-determined group members with 90% accuracy.

Materials $\mathbb{N e e d e d : ~}$

* A set of 5 different juice solutions:
cranberry juice, pineapple juice, grape juice, orange juice, and apple juice.
* Data Recording Sheet/ Graph Paper
* 5 plastic cups for the juices.
pH Paper
* Calculator
* Worksheet
* DO-NOW : (**Based on lesson and material taught prior to this activity**)
-Define and Review the following basic concepts:

1) Acid
2) Base
3) Concentration
4) Independent Variable
5) Dependent Variable
6) pH

Find the $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]$ of a solution with a pH level of 5.56

efinition of Basic Concepts Terms:

1) Acid: a substance that donates hydrogen ions.
2) Base: a substance that accepts hydrogen ions.
3) Concentration: the relative amount of a particular substance, a solution, or mixture.
4) Independent Variable: the factor that is changed in an experiment, in order to study change in the dependent variable. (graphed on x-axis)
5) Dependent Variable: factor being measured or observed in an experiment. (graphed on y-axis)
6) pH : a measure of the acidity or alkalinity of a solution.

Find the $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]$ of a solution with a pH level of 5.56 .

Step 1: Write equation. $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]=10^{\wedge}-\mathrm{pH}$
Step 2: Plug in pH value. $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]=10^{\wedge}-5.56$
Step 3: Solve $\left[\mathrm{H}_{3} \mathrm{O}+1\right]=2.75$

- Explanation of hands- on activity to the students.
* Objectives
* Materials:
- A set of 5 different juice solutions:
cranberry juice, pineapple juice,grape juice, orange juice, and apple juice.
- Data Recording Sheet/ Graph Paper
- 5 plastic cups for the juices.
- pH Paper
- Calculator
- Worksheet
*Assign groups and distribute materials.

Beginning of group work.

* During this time, students should be:
-Collectively measuring the pH level of each juice.
- Individually recording their findings in the provided data tables.

Sample Measurements of pH્F Levels:

Development :

- Collectively review data table on handout.
* Example of appropriately filled- out data table:

Development:

* Brief discussion of data table.
- Pattern/ relationship between pH level and [$\mathrm{H}_{3} \mathrm{O}+{ }^{1}$].
* At this time, students will:
-Form coordinate points from the data table.
- Graph and label their coordinates on the blank plane.
* Example of acceptable form of graph:

* At this time, students will:
- Complete the Extra Practice worksheet, and answer comprehension activity questions upon completion of worksheet.

Find the missing information from the data given below. (Modeled steps from do- now.)

1) Milk:
pH Level: 7.8
$\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]: ?$
Step 1: Write equation. $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]=10^{\wedge}-\mathrm{pH}$
Step 2: Plug in pH value. $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]=10^{\wedge}-7.8$
Step 3: Solve $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]=1.58$
Acid or Base? : Base
Because neutral pH level is 7 and milk's pH level is above 7 .

Independent Practice:

Homework Assignment: show all of your work, including formulas/ equations used.

- Find the Acidity/ pH level and $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{+1}\right]$ of lemon juice.
- Find the Acidity/ pH level and $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{+1}\right]$ of lime juice.
- Make a table and record your data.
- Label and graph your data on graph paper.

*Do-Now:

-Define and Review basic concepts
-Recall the formula for solving $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]$

Level 2: Comprehension
 *Do-Now/Guided Practice:

-Translate given information into known formulas to solve appropriately.

* Level 3:Application *Hands- On Activity:
-Construct a graph based on collected data of pH levels and $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]$.
- Discover significance or patterns between the pH levels and $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]$.
* Level 4:Analysis

*Hands-On Activity/ Guided Practice:

-Identify patterns and relations between pH levels and $\left[\mathrm{H}_{3} \mathrm{O}+{ }^{1}\right]$.
-Examine the formulas and concepts used for finding missing information.

Level 5: Synthesis

*Hands-On Activity/ Guided Practice:
-Generate deeper understanding of Acidity with pH levels and the relation it has to [$\mathrm{H}_{3} \mathrm{O}+{ }^{1}$].

- Completing the Comprehension review questions to generate conceptual understanding of the concepts taught.

Level 6:Evaluation

*Hands- On Activity:
-Support one's conclusions through collected data, graphs, and questions.
http://www.algebralab.org/activities/activity.aspx?file=Science_Juice. xml

Google images

